
INTRODUCTION TO COMPUTING

TOPIC V: SYMBOLIC LOGIC

PAUL L. BAILEY

1. Propositions

A proposition is a statement which is either true or false, although we may not
know which. Propositions are denoted by lowercase letters such as p, q or r. The
truth or falsity of the proposition is called its truth value, and the two possible
truth values are labeled T for TRUE and F for FALSE. The truth value of the
proposition p is denoted V(p).

For example, the statement “The sun rises in the east” is a proposition, and if
we wish to label this statement p, we write

p = “The sun rises in the east”.

Similarly, we may write

q = “The sun rises in the west”.

In this case, V(p) = T and V(q) = F.

2. Logical Operators

Propositions may be modified and combined by the use of logical operators,
which take one or more propositions and create a new one which has its own truth
value. The resultant truth value is uniquely determined by the truth value(s) of
the proposition(s) operated upon and the operator(s) used. Operators which accept
one input are called unary operators, and operators which accept two inputs are
called binary operators.

The behavior of each logical operator is determined by a truth table. The truth
table lists all possible combinations of the truth values of the inputs, and states the
operator’s output for each combination of inputs.

The simplest useful logical operator is the negation operator NOT (¬), which
operates on a single proposition and reverses its truth value. Thus

¬(“Pigs are mammals”) = “Pigs are not mammals”.

Date: September 6, 2017.

1



2

The action that NOT has on the truth value of a proposition is defined by its
truth table, which lists the possible truth values of a proposition p side by side with
the truth value of ¬p:

p ¬p
T F
F T

Table 1. NOT Truth Table

Assertion 1. If p is any proposition, then

V(¬(¬p)) = V(p)

.

Proof. If p is TRUE, then ¬p is FALSE, and so ¬(¬p) is TRUE. If p is FALSE,
then ¬p is TRUE, and so ¬(¬p)) is FALSE. �

The next logical operator we consider is the conjunction operator AND (∧). The
proposition p∧q is true only when both p and q are true propositions. For example,
if p = “Pigs are mammals” and q = “Pigs fly”, then p ∧ q may be interpreted as
“Pigs are flying mammals”. The AND operator is defined by a truth table which
lists all possible combinations of the truth values of p and q:

p q p ∧ q
T T T
T F F
F T F
F F F

Table 2. AND Truth Table

The disjunction operator OR (∨) returns a value of TRUE whenever either
proposition it operates upon is true, and therefore is defined by:

p q p ∨ q
T T T
T F T
F T T
F F F

Table 3. OR Truth Table

Thus if let p and q be as above and we assume that pigs are mammals who
cannot fly, we have V(p) = T, V(q) = F, V(p ∧ q) = F and V(p ∨ q) = T.

At this point we adopt the convention that the NOT operator takes “binds
tighter” than any other operator, that is, it takes precedence in the order of oper-
ations and applies only to the object on its immediate right. Thus ¬p ∧ q means
(¬p) ∧ q as opposed to ¬(p ∧ q). We are now ready for our first theorem.



3

Theorem 1. (DeMorgan’s Laws) For any two propositions p and q we have

(1) V(¬(p ∨ q)) = V(¬p ∧ ¬q);
(2) V(¬(p ∧ q)) = V(¬p ∨ ¬q).

Proof. The proofs of these assertions are truth tables in which each step is ex-
panded, and the columns corresponding to either side of the equalities above are
compared.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

�

If propositions are linked together to form new propositions via logical opera-
tors, the result may be called a composite proposition. Propositions which are not
presented as composites are known as atomic propositions, or atoms. It is critical
to realize that the propositional calculus we are developing cannot tell us anything
about the truth or falsity of atoms. However, if we know the truth value of atoms
prior to applying the propositional calculus to some composite of them, it will tell
us the truth value of that composite.

The proof of DeMorgan’s Laws points out that even complicated composites
have corresponding truth tables which relate the possible truth values of potentially
unknown propositions to the truth value of the composite. In particular, suppose
we do not know the truth values of p and q, and we let r = ¬(p∧q) and s = ¬p∨¬q.
Then V(r) = V(s) regardless of the meaning of p and q.

Corollary 1. The disjunction operator OR may be defined in terms of the negation
operator NOT and the conjunction operator AND as

V(a ∨ b) = V(¬(¬a ∧ ¬b)).

Proof. Apply Assertion 1 to DeMorgan’s First Law (take the NOT of both sides).
�

We may think of the NOT operator as distributing into the AND operator, but
when it does so it changes AND to OR. An analogous statement applies to the OR
operator. However, we do have a actual distributivity of AND over OR and of OR
over AND.



4

Theorem 2. (Distributive Laws) For any two propositions p and q we have

(1) V((p ∨ q) ∧ r) = V((p ∧ r) ∨ (q ∧ r));
(2) V((p ∧ q) ∨ r) = V((p ∨ r) ∧ (q ∨ r)).

Proof. The tables tell the story.

p q r p ∨ q (p ∨ q) ∧ r p ∧ r q ∧ r (p ∧ r) ∨ (q ∧ r)
T T T T T T T T
T T F T F F F F
T F T T T T F T
T F F T F F F F
F T T T T F T T
F T F T F F F F
F F T F F F F F
F F F F F F F F

p q r p ∧ q (p ∧ q) ∨ r p ∨ r q ∨ r (p ∨ r) ∧ (q ∨ r)
T T T T T T T T
T T F T T T T T
T F T F T T T T
T F F F F T F F
F T T F T T T T
F T F F F F T F
F F T F T T T T
F F F F F F F F

�

Intuitively we realize that AND and OR are commutative operators, which is to
say that p∧ q means the same thing as q ∧ p and p∨ q is just another way of saying
q ∨ p. Thus we are content when we notice that our truth tables agree. It is also
easily verified that AND and OR are associative operators, and we leave it to the
reader to verify this.

Assertion 2. (Commutativity Laws) For any two propositions p and q we have

(1) V(p ∧ q) = V(q ∧ p);
(2) V(p ∨ q) = V(q ∨ p).

Assertion 3. (Associativity Laws) For any propositions p, q, and r we have

(1) V((p ∧ q) ∧ r) = V(p ∧ (q ∧ r));
(2) V((p ∨ q) ∨ r) = V(p ∨ (q ∨ r)).



5

Commutativity and associativity do not hold for all of the commonly used logical
operators. This brings us to the implication operator IMP (⇒), where we read p⇒ q
as “p implies q” or as “if p, then q”. We have a name for the components of an
implication: p is called the hypothesis and q is called the conclusion. One may be
surprised by the truth table of this logical operator the first time it is encountered:

p q p⇒ q
T T T
T F F
F T T
F F T

Table 4. IMP Truth Table

A false proposition implies anything one wishes it to imply. Thus the proposition
“If pigs fly, then the earth if flat” is true whether or not the earth is indeed flat.
Just to get our feet wet with the implication operator, we assert the following,
which may be verified directly from the truth tables.

Assertion 4. If p and q are propositions, then

(1) p⇒ (p ∨ q);
(2) (p ∧ q)⇒ p.

Assertion 5. If p and q are propositions, then

V(p⇒ q) = V(¬q ⇒ ¬p).

Theorem 3. The implication operator IMP may be built from the negation operator
NOT and the conjunction operator AND operators since

V(p⇒ q) = V(¬(p ∧ ¬q)).

At this point you may be asking why we chose for p⇒ q to be true even when p
and q are both false. The others choices in the truth table for implication are easily
justified by common sense, but why this one? The answer lies in the truth table
for the equivalence operator and the theorem which follows it, a theorem which we
very much want to be true and which depends on this choice.

The equivalence operator IFF (⇔) signifies logical equivalence, so that p⇔ q is
read “p is logically equivalent to q” or “p if and only if q”. This is the operator
that answers the question “do p and q have the same truth value?”

p q p⇔ q
T T T
T F F
F T F
F F T

Table 5. IFF Truth Table

The following theorem justifies our double sided arrow notation.



6

Theorem 4. If p and q are propositions, then

V((p⇒ q) ∧ (p⇒ q)) = V(p⇔ q).

Proof. We have a proof by truth table.

p q p⇒ q q ⇒ p (p⇒ q) ∧ (q ⇒ p) p⇔ q
T T T T T T
T F F T F F
F T T F F F
F F T T T T

�

Theorem 5. The equivalence operator IFF may be constructed from the negation
operator NOT and the conjunction operator AND because

V(¬(p ∧ ¬q) ∧ ¬(¬p ∧ q)) = V(p⇔ q).

At this point we may abandon our V(p) notation in preference to usage of the
IFF operator, for it is clear that for any two propositions p and q, then V(p) = V(q)
is the logical equivalent of p⇔ q. For example, the above claim could be written

V((¬(p ∧ ¬q) ∧ ¬(¬p ∧ q))⇔ (p⇔ q)) = T,

or simply
(¬(p ∧ ¬q) ∧ ¬(¬p ∧ q))⇔ (p⇔ q),

since asserting the above is taken to mean asserting that it is true.

3. Additional Operators

In this section we introduce primitive logical operators which do not arise in
ordinary language but which, nonetheless, arise from definitional truth tables which
differ from those we have already encountered. These are XOR, NOR, and NAND.

The exclusion operator XOR (m) stands for exclusive OR and means a or b, but
not both.

a b a m b
T T F
T F T
F T T
F F F

Table 6. XOR Truth Table

The XOR operator is often denoted in the context of computer science with ⊕;
that is, p⊕ q means the same thing as p m q.

Assertion 6. The XOR operator is the negation of IFF, i.e.,

(a m b)⇔ ¬(a⇔ b).



7

The alternate denial operator NOR (⇓) means “neither a nor b”.

a b a ⇓ b
T T F
T F F
F T F
F F T

Table 7. NOR Truth Table

Assertion 7. The NOR operator is the negation of OR, i.e.,

(a ⇓ b)⇔ ¬(a ∨ b).

The joint denial operator NAND (⇑) means “possibly a and possibly b, but not
both”.

a b a ⇑ b
T T F
T F T
F T T
F F T

Table 8. NAND Truth Table

Assertion 8. The NAND operator is the negation of AND, i.e.,

(a ⇑ b)⇔ ¬(a ∧ b).

A collection of operators generates another operator if the truth table of gener-
ated operator can be derived through a combination of the generators. For example,
we have already seen that NOT and AND together generate OR, IMP, and IFF.
Since XOR is NOT IFF, NOR is NOT OR, and NAND is NOT AND, we can see
that NOT and AND generate XOR, NOR, and NAND.

Theorem 6. The operators NOT, AND, OR, IMP, IFF, XOR, and NAND may
be derived from NOR.

Proof. It suffices to show that NOT and AND may be written in terms of NOR.
The definition of NOR and DeMorgan’s Law gives us that

(1) ¬a⇔ (a ⇓ a);
(2) (a ∧ b)⇔ (¬a ⇓ ¬b).

�

Theorem 7. The operators NOT, AND, OR, IMP, IFF, XOR, and NOR may be
derived from NAND.

Proof. It suffices to show that NOT and AND may be written in terms of NAND.
The definition of NAND and a glance at the truth tables gives us that

(1) ¬a⇔ (a ⇑ a)
(2) (a ∧ b)⇔ ¬(a ⇑ b)

�



8

4. Problems

Problem 1. Determine the truth table of the following composite propositions.

(a) (p ∨ q)⇒ (p ∧ q)
(b) (p ∧ q) ∨ (p⇒ q)
(c) (p⇒ q)⇒ p
(d) p⇒ (q ⇒ p)
(e) (p⇒ q)⇒ q
(f) p⇒ (q ⇒ p)
(g) (p⇒ q)⇒ r
(h) p⇒ (q ⇒ r)
(i) ((p⇒ q) ∧ (q ⇒ r))⇒ (p⇒ r)
(j) (p ∧ q)⇔ (p m q)
(k) (p ⇑ q)⇒ (p ∨ q)

Problem 2. Complete the proof of Assertion 5.

Problem 3. Write a logically equivalent statement using NOT, AND, and OR.

(a) ¬(p⇒ q)
(b) (p⇒ q)⇒ r

Problem 4. Use truth tables to prove the following assertions.

(a) (a m b)⇔ ¬(a⇔ b)
(b) (a ⇓ b)⇔ ¬(a ∨ b)
(c) (a ⇑ b)⇔ ¬(a ∧ b)

Problem 5. Show that the logical operators NOT and OR are sufficient to generate
AND, IMP, IFF, XOR, NOR, and NAND.

Problem 6. Develop the truth tables for logical operators of one proposition other
than NOT. You should get three of these, and you will see that they may reasonably
be called identity, constant truth, and constant falsehood.

Problem 7. Develop the truth tables for logical operators of two propositions
other than AND, OR, IMP, IFF, XOR, NOR, and NAND. You should get nine
of these. Give these new operators names. Relate them to the operators of one
proposition identity, constant truth, constant falsehood, and negation. Relate them
to the operators of two propositions AND, OR, IMP, IFF, XOR, NOR, and NAND.

Department of Mathematics, BASIS Scottsdale

Email address: paul.bailey@basised.com


